电力电子器件论文【五篇】(范文推荐)

发布时间:2023-08-22 19:25:06   来源:心得体会    点击:   
字号:

电子材料与器件课程是电子科学技术相关专业的基础性课程,对于学生巩固基础知识和提高专业技能是极为重要的。而提高电子材料与器件课程教学的质量,使课程与社会需求相结合,是高校教师探索的重中之重。笔者承担着我下面是小编为大家整理的电力电子器件论文【五篇】(范文推荐),供大家参考。

电力电子器件论文【五篇】

电力电子器件论文范文第1篇

【关键词】电子科学与技术;
电子材料与器件;
教学方法

电子材料与器件课程是电子科学技术相关专业的基础性课程,对于学生巩固基础知识和提高专业技能是极为重要的。而提高电子材料与器件课程教学的质量,使课程与社会需求相结合,是高校教师探索的重中之重。笔者承担着我校电子材料与器件课程的教学任务,在总结教学经验的基础上,笔者在教学内容、课程安排和教学形式等方面进行了尝试,并取得了一定的教学成果。

1.电子材料与器件简介

处于电子科学技术产业链前端的电子材料和元器件是众多核心基础产业的重要组成部分,是计算机网络、通讯、数字音频等系统和相关产品发展的基础。电子材料与器件是指在电子技术和微电子技术中使用的材料和器件,包括半导体材料与器件、介电材料与器件、压电与铁电材料、导电金属及其合金材料、磁性材料光电子材料和磁性材料、电磁波屏蔽材料以及其他相关材料与器件。电子材料与器件是现代电子产业和科学技术发展的重要物质基础,同时又是科技领域中技术导向型学科。它涉及到物理化学、电子技术、固体物理学和工艺基础等多学科知识。根据材料的化学性质,可以分为金属电子材料,电子陶瓷,高分子电子、玻璃电介质、气体绝缘介质材料,电感器、绝缘材料、磁性材料、电子五金件、电工陶瓷材料、屏蔽材料、压电晶体材料、电子精细化工材料、电子轻建纺材料、电子锡焊料材料、PCB制作材料、其它电子材料。

2.电子材料与器件课程教学模式

2.1电子材料与器件课程教学形式

电子材料与器件课程既包含电子材料的物理特性和电子器件的工作原理,还包含丰富的电子材料与器件的理论知识,并且与实践应用紧密结合。为了更好的培养学生的时间能力,增强实践意识,达到学以致用的目标。因此,电子材料与器件的课程教学应采取实验教学和理论教学相结合的教学形式,教师安排合理的实验活动,将理论教学与实验教学有机结合,达到学生巩固理论知识、增强实践技能的教学目标。

2.2电子材料与器件教学课时安排

教学采用教材《电子材料与器件原理》。在电子材料与器件教学的课时安排上,该课程作为电子科学与技术专业的核心课程,电子材料与器件课程的总课时应不少于80学时,理论课学时设计应在64学时左右,实验课学时应在16学时左右,任课教师可以根据教学过程中的实际情况增加或减少某一章节的课时安排。

2.3电子材料与器件课程教材选择

在电子材料与器件课程的教材选择方面,由于电子材料与器件是电子科学技术的一部分内容,目前我国关于电子科学技术的参考书籍很多,其中也不乏经典教材,但考虑到本科生对于该课程接触时间段、基础知识薄弱等特点,笔者认为任课教师可以自行编写课件和讲义,以便学生更好的理解教学内容。除此之外,由加拿大萨斯喀彻温大学电气工程系教授、加拿大电子材料与器件首席科学家萨法・卡萨普编写的《电子材料与器件原理(第3版)》也是业界公认的电子材料与器件教学的参考书籍。

3.电子材料与器件课程的理论教学

在新时期素质教育的背景下,电子材料与器件课程的理论教学更侧重于加强学生的实践能力,因此需要对传统的电子科学技术教学中重视原理、定律和规律的模式进行调整,在教学内容的设置方面,为了便于学生更好的理解知识体系,以笔者讲授电子材料与器件理论课程(共80学时)为例,该理论课程共被划分为材料科学的基本概念、固体中的电导和热导、量子物理基础、现代固体理论等四个章节,这四个章节阐述了电子材料与器件涉及的基础理论,内容包括材料科学基础理论、固体中的电导和热导、量子物理基础和现代固体理论,以及对各种功能材料与器件的原理与性能的讨论。另外,在讲授每章内容时,任课教师应注意弱化理论知识,增加实践知识。

4.电子材料与器件课程的实验教学

电子材料与器件的实验教学要与理论教学紧密结合,并重点介绍理论课上讲过的电子材料与器件,实验课程学时不能偏少,开设实在要安排在理论教学完成之后,使学生能够充分将理论知识应用于实践中。在实验开始前,教师要要求学生充分掌握理论知识,实验结束后,学生要写实验报告,使实验切实产生作用,而不是走马观花。在实验课程的设定方面,要尽量避免与其其它验课程的重复,还要确保理论与实践相辅相成,充分利用实验资源。

5.电子材料与器件课程的学生评价体系

素质教育的电子材料与器件课程的学生评价标准应区别于传统的考试评价方式,教师要将学生的平时表现、理论知识掌握、实践能力等纳入对学生的评价体系中。促使学生不再局限于对电子材料与器件规律、定义等知识的僵化掌握,而是将学习重点偏向于实践和应用。这种评价方式的转变,有利于学生积极主动的掌握知识,在实践中巩固理论知识,在理论中深化实践知识,全面提高电子材料与器件的课程教学效率和质量。

电子材料与器件在信息产业的发展与科学技术的研究中的重要性与日俱增。它既是电子科学技术体系专业知识中的重要环节,更为电子科学专业的学生提供了良好的科研基础和就业竞争力。本文通过对电子科学与技术专业特点与电子材料与元器件课程内容的分析,探讨了电子材料和元器件在电子科学专业领域的重要性,笔者还结合自身多年电子科学专业的教学经验,对电子材料与元器件教学的教学形式、课时安排、教材选择进行了新的探索,对电子材料和元器件的理论和实践课程提出了新的意见和建议,以便于提高教学质量,提升学生专业素养。

【参考文献】

[1]萨法・卡萨普.《电子材料与器件原理(第3版)》.西安交通大学出版社.2009年6月

[2]安毓英,刘继芳,李庆辉.光电子技术[M].3版.北京:电子工业出版社,2013

电力电子器件论文范文第2篇

【关键词】混杂系统控制;
最优控制;
电力电子

0引言

由于电力电子变换器本质的高阶非线性,闭环控制问题多年来未能得到较好的解决。线性、非线性和智能控制理论在电力电子中先后得到应用,由于模型存在误差或者控制理论本身的不完备,这些解决方案都未能达到最佳。近年来随着半导体技术的发展,高精度的高速微处理器的出现和普及,使现代控制及智能控制方法的实时计算或近似估算成为可能。在设计高性能的电力电子系统时,先进控制理论的应用是很有实用价值的。本文对混杂系统控制理论的发展现状做了总结,对电力电子变换器的混杂系统建模及混杂系统控制理论在电力电子学的应用进行了总结和展望,指出切换系统最优控制的应用是一个比较新颖的研究方向。

1混杂系统控制的研究现状

混杂系统是一类包含相互作用的连续动态过程和离散动态过程的动态系统,混杂系统控制理论是继线性系统、非线性系统控制理论之后发展起来的系统控制理论。经典及现代控制理论研究的数学模型可以视为混杂系统的一个特例,而将传统控制的理论体系推广到混杂系统控制理论还有大量的理论研究要做。混杂系统的模型有很多种,如层次结构模型、自动机模型,混合逻辑动态模型,切换模型等,其中应用最广泛的是自动机模型。混杂系统的控制方法与现代控制理论类似,也包括自适应控制、学习控制、容错控制、镇定控制、最优控制和鲁棒控制等,这里仅对三种研究较为深入的控制方法加以说明。(l)镇定控制:是指在给定平衡点下,调整控制策略,使系统由不稳定转换为稳定的控制策略。类似传统控制中用输出或状态反馈令开环不稳定系统闭环稳定。(2)最优控制:就是在约束条件下,满足初值和终值条件,并使系统的给定性能指标达到最优的控制策略。(3)鲁棒控制:实际的混杂系统通常存在各种不确定性,鲁棒控制器按标准状态设计,也能够分析并克服这些不可预见的干扰因素,令闭环系统具有一定的鲁棒性。

2电力电子变换器的混杂系统建模

电力电子变换器中开关器件的存在,使它成为一个典型的开关非线性系统。随着开关的通断,电路处在不同的工作状态;
每一个状态中,系统都随时间连续运行。在变换器外部或内部事件的驱动下,系统在各个状态间循环跳转,输出由在几个状态间的切换平均实现。变换器的运行特征与混杂系统完全吻合,因此可以说,电力电子变换器是一类典型的混杂系统。目前在电力电子变换器的混杂系统建模中应用较多的有自动机模型和切换系统模型,按这两种思路得到的变换器数学模型基本是一致的。

3混杂系统控制在电力电子中的应用

在国内,从20世纪末开始,越来越多的学者投入到混杂系统控制理论的研究,并致力于将混杂系统控制理论应用于电力电子变换器,目前取得了一定的成果。文献[3]是国内较早将混杂系统理论引入电力电子变换器研究的论文,对电力电子电路进行了混杂系统建模、故障诊断、事件辨识以及小波故障分析等方面的研究。文献[4]对变换器用自动机模型建模做了有益的探索,利用混杂自动机理论建立了电力电子电路的统一抽象模型,并设计出新型滑模变结构控制器。将混杂系统模型和非线性控制方法结合是有益的尝试。文献[5-6]建立了DC-DC变换器的切换线性系统模型,并引入了切换线性系统投影法的概念,提出最小投影法切换律的控制策略。仿真和实验结果表明最小投影法切换律在DC-DC变换器中具有普遍适用性。为了实现切换控制的鲁棒性,与PI控进行了结合在扰动情况下对平衡点进行修正。最小投影法切换律的本质是切换系统在任意初始状态都能够选择一个指向平衡点的速度矢量场,使系统轨迹不断逼近并最终稳定运行于平衡点。

4切换系统最优控制及其在电力电子中的应用展望

对混杂系统的最优控制问题的研究,取得了一定的成果,特别是基于切换线性系统的最优控制。基于经典的动态规划方法,文献[7]针对切换线性系统的最优控制提出了一种二阶段算法。首先固定切换序列,在此条件下求得切换系统最优控制问题的次优解;
然后改变切换序列(改变切换次数和顺序)来求全局最优解。当把电力电子变换器视为周期的切换线性系统,可以用来实现多种目标的最优控制。这种情况下系统不能达到一般意义上的最优,但是其运算较为简单,在一定程度上可以达到设计目标,具有一定的实用价值。文献[8]给出基于范数、基于收敛路径、基于收敛距离、基于收敛方向和基于综合的周期切换线性系统的最优切换律的设计方法,可以尝试推广到更复杂的情形,检验其性能。切换系统控制本身还不成熟,有很多问题在控制理论上未能很好地解决。由于切换线性模型可以精确地描述电力电子变换器,切换线性系统最优控制期望能得到更好的特性。

5结论

作为一门交叉学科,电力电子学的发展与控制理论的应用密切相关。目前混杂控制理论还有较大的发展空间,它在电力电子的应用更是刚刚起步。切换控制是新兴的控制方法,由于它所处理的切换系统模型可以较为精确地刻画电力电子变换器,它在电力电子中的应用具有较好的前景。

作者:王磊 单位:韩山师范学院物电系

【参考文献】

[1]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3):24-35.

[2]杨宽,"基于混杂系统理论的电力电子电路建模与控制研究[D]"2010.

[3]胡宗波,张波,邓卫华,等.基于切换线性系统理论的DC-DC变换器控制系统的能控性和能达性[J].中国电机工程学报,2004,24(12):165-170.

[4]胡宗波.基于切换线性系统的DC-DC变换器控制基础理论研究[D].广州:华南理工大学,2005.

[5]肖文勋.电力电子变换器切换线性系统模型的稳定性与最小投影法切换律[D].广州:华南理工大学,2008.

[6]Wenxun,X.,Bo,Z.&Dongyuan,Q.Modelingandcontrolruleofthree-phaseBoost-typerectifierasswitchedlinearsystems[C].InternationalConferenceonElectricalMachinesandSystems,17-20Oct.2008,1849-1854.

电力电子器件论文范文第3篇

我国国民经济的不断发展使得我国的电力系统建设获得了长足的进展,尤其是电子技术的引入,促进了我国电力系统的进一步深化,在工业化时代,强电系统已然成了我国电力系统发展中不可替代的一个重要的组成部分,因此本文主要从电子技术在强电系统当中的作用进行深入的分析和探讨。

关键词:

电子技术;
强电系统;
分析;
探讨

0前言

在我国国民经济飞速发展的大环境下,电子技术也有了极大的发展。与此同时,电子技术的发展让大量的新技术运用到了社会的各个领域当中,现如今的社会是高速发展的信息社会,社会中各个领域的发展都离不开信息技术的支持,而随着计算机技术及网络技术的应用,电子技术也应运而生,目前电子技术的应用范围也是极其广泛的,我国最早利用电子系统的时间短是在改革开放之后,那时候人们的生活水平就已经有了很大程度上的提高,而随着物质生活以及文化生活的提高,人们开始对电力能源重视起来,对电力的运行安全问题也是非常的关注,将电子技术应用在强电系统中可以推动我国电力系统的更新,对强电系统的发展也能够起到很好的促进作用。

1电子技术的优势及意义

1.1电子技术的优势

电子技术之所以能够在人类的生产生活中得到广泛的运用,这与它的优势是分不开的,电子技术的优势主要体现在以下几个方面:(1)全控化。由于传统的电器件都是属于半自动形式控制的,半自动控制的电器件一般其换相电路都要比传统的电器件复杂很多,而随着电子技术的引入,自关段器件的电路也得到了进一步的优化,从而更好地运用电子技术实现了全自动控制操作。(2)集成化。所谓的集成化主要是将所有的全控型电子器件利用数量较多的电子单元器件结合在一起,将其放在同一个基片上,这种集成化的处理方式与之前传统的电子器件分立的方式进行比较我们可以非常明显地看出,集成化的处理可以极大地缩短电器件运行的时间,除了这一点以外,高频化的优势也是集成化的一个优点,它可以提高电子器件的工作效率。(3)高效率。高效率化这一优势主要体现在了电子器件及变换技术上,主要是通过电子技术来降低导通的压降,使得最终电器件的效率有了极大的提高,之前在变换器的使用中,多数都是使用硬开关技术,现如今软开关技术的应用,对提高强电系统的运行效率也是起到了非常重要的作用。

1.2电子技术在强电系统中的意义

电子技术在强电系统中的应用可以有效地提高电力能源的应用效率,电子技术还可以提高强电系统运行的安全,能够实现对电力资源的优化配置,降低了电力企业的成本投入,提高了电力企业的经济效益。与此同时电子技术在强电系统中的应用还有效地促进了我国现代化的发展进程,随着高新技术的不断出现,越来越多的产业在投入生产之前都进行了电子技术的处理工作,这样做的目的也是为了进一步的保证电力系统的运行可以在网络技术的监管下进行,保障了电力系统的运行安全。

2电子技术在强电系统中的应用研究

2.1在发电系统中的应用

电子技术在发电系统中的应用主要是用来调节发电系统中的功率,在结构相对比较简单的静止励磁中,运用晶闸管整流可以提高静止励磁的可靠性,最重要的是所花费的资金成本也会得到降低,而在电力系统中,我们在控制水力和风力发电机的时候,对转子中的励磁电流产生的频率进行调整之后,可以提高水力和风力发电的功率。由于电力系统当中风机水泵所消耗的能量是非常大的,基本上占了整个系统的百分之七十,而且工作的效率还非常的低,针对这一情况,我们的研究人员在系统当中安装了变频调速,很好地解决了这一问题,但是从实际的情况来看,我国可以运用高压大容量的变频器系统还不是很多,所以对电力系统进行较为精准的控制暂时是不现实的。

2.2电子技术在输电环节的广泛应用

在输电环节上,直流输电技术以及高压直流输电都选择了晶闸管变流装置,这一装置可以从根本上解决那些长距离、大容量输电系统的无功损耗问题。直流输电技术不仅稳定性好,其灵活程度也是最高的,其电容量也非常大,即便我国各个省市地区的地形地质特点不同,直流输电技术也能够在不同的地质地貌条件下远程的进行输电作业。在输电环节中,电力能源会在输送的过程当中出现巨大的损耗,打个比方说,如果想要从一个城市输送电能到另一个城市,如果输送的距离较长的话,那么就会有30%~40%的电能在传输的过程当中被损耗掉了,最终输送到的电能可能都不到一半。而自从电子技术的出现就很好地解决了这一问题,不管输送电能的距离有多远,最终输送到的电能都可以保证在90%以上,将电能的输送损耗降到了最低。这也是为什么电子技术在输电环节如此受欢迎的原因之一。

3结语

电子技术在强电系统中的应用,降低了电力能源在传输过程当中出现的损耗,有效地提高了电力能源的利用效率,使得企业的生产效率得到了提高,除此之外,我们还发现,电子技术在强电系统中的应用也是当前信息化社会发展的一个整体趋势,因此在新时代下,我们的研究人员要不断地加强对电子技术的研究,电子技术在强电系统中运用所出现的一些问题也就可以得到及时的解决,也能够进一步的推动我国电力事业的可持续发展。

作者:陈坤 宁宇 刘柏霖 单位:沈阳理工大学自动化与电气学院 沈阳理工大学信息科学与工程学院

参考文献:

[1]姜放,王志强,李国锋.三相线电流平衡化补偿方法[A].2011年通信与信息技术新进展——第八届中国通信学会学术年会论文集[C].2011.

[2]游广增.电力电容器的谐波分析及一种谐波抑制方法[A].2010年云南电力技术论坛论文集(文摘部分)[C].2010.

[3]梁喆,欧阳名三.基于负荷侧无功补偿的静止无功发生器控制方法研究[A].第四届安徽科技论坛安徽省电机工程学会分论坛论文集[C].2006.

电力电子器件论文范文第4篇

论文摘要:随着电子计算机的大量普及,各职业院校计算机不断升级,在计算机上应用电子仿真软件来完成电子教学的实验已成为一种可能。而且这将给职业院校节约了大量的物力、财力,使得电子实验既可以节约环保,又给电子教学带来直观、有效的实验,对理论教学起到了很好的辅助作用。

一、电子仿真在电子教学中的优越性

随着电子计算机技术的大力发展,各种电子仿真软件不断涌现。当今世界流行的电子仿真软件如:orcad、pspice、matlab、proteldxp、multisim等。而其中proteldxp、multisim在职业院校电子教学点突出、功能齐全、操作方便、普及性较高。利用仿真软件来实验的数据和技术指标都是真实有效的,不需要附加额外条件,与实际电路运行相同。无需太多的抽象思维,与在实验室工作一样,任意设计电路、运行、数据分析,许多的教学内容在课堂上就能解决,教学效果好,教学效率高。而且电子仿真在计算机上完成各种实验,将大大的激发学生的学习积极性,使原来无味的理论教学变得生龙活虎。使得从感性认识上升为理性认识变得非常直观。增强了学生的互动性。

用计算机仿真代替了大包大揽的试验电路,大大减轻验证阶段的工作量,其强大的实时交互性、信息的集成性和生动直观性,为电子专业教学创设了良好的平台,极大地激发了学生的学习兴趣,能够突出教学重点、突破教学难点,并能保存仿真中产生的各种数据,为整机检测提供参考数据,还可保存大量的单元电路、元器件的模型参数,采用仿真软件能满足整个设计及验证过程的自动化。所以电子仿真在职业院校电子教学中的广泛应用将会给电子技术带来一场革命。同时也给电子设计人员带来了一场前所未有的发展前锦。

过去有些没有实验条件的学校教师在进行电子教学时,一般都是在黑板上画电路,而且不标准也不美观,起不到很好的示范作用,现在利用仿真软件可以很方便的画出标准而且美观的电路,使得电子教学不论是理论还是实验课大大的提升到新的水平,很容易激发学生的创新精神。过去由于实验器材等因素的影响,很多学生不能亲自参加电子实验。而且有的电子实验学生要接触到电,所以也存在一些不安全的因素,现在利用电子仿真软件可以使学生放心大胆的去完成各种电子实验,给电子教学带来很大的发展前锦。

二、电子仿真在电子教学理论课中的作用

过去由于电子教师在教学中大都采用理论传统的教学模式,使得理论课教学枯燥无味。采用电子仿真软件后,理论课教学可以生动活泼,特别是有些理论课要用实验去验证他的实际性,更显得电子仿真软件的必要性。在以前很难用实验去进行的理论分析,现在显得运用自如,而且电子仿真软件提供了多种理论分析的方法,这些在以前的电子教学中是不容易实现的。电子仿真软件引入电子理论课教学后,一改过去老师讲的课堂教学模式,可以和学生互动,让学生参与到电子理论教学中来,可以大大的激发学生学习理论课的积极性和趣味性,培养学生的理论水平,分析问题和解决问题的能力。

三、电子仿真软件在电子教学实验课中的作用

电子仿真软件引入高职电子实验课后可以有效克服以前为实验设备、实验经费不足、以及环保等问题的困扰,大大的提升了学生电子实验的效率。过去学生进行的电子实验不仅需要大量的实验器材,而且有些实验设备还达不到应有的实验精度而让实验结果出现很大的偏差。有些电子实验由于学生错接一根导线可能导致实验设备的损坏,而在电子仿真软件提供的虚拟实验中,就不会出现这些情况。在有些电子实验中,出现杂散电容、漏电感等因素,导线的长短对电路的影响等,都会使结果偏离正常值。从而混淆了对电路的理解,导致对电路的基本原理和性能的影响。使学生对理论产生怀疑,失去了理论课教学的作用。电子仿真软件在高职电子教学的实训方面,他可以利用了软件上的虚拟仪器、仪表、元器件等进行各种实验,从而达到和实际实验室一样的效果,一样的实验数据,这给电子实训课教学带来了极大的方便。电子仿真软件由于计算机在家庭中的大量普及,使学生在家里也可完成各种电子实验。克服了以往学生只能在实验室做电子实验的缺点,开创了学生可以在不同场所随意进行电子实验方便。由于电子仿真软件提供的实作器材、仪表、仪器种类多,学生可以选择各种电子器材进行实验,不会出现因器材、仪器、仪表不足而不能实验的缺憾。特别是利用电子仿真软件,使学生的实验数据更加准确,更接进实际值。电子仿真软件在电子教学中的应用,大大的推动了电子实训课的改革。使得环保、安全、稳定、方便快捷的电子实训课成为一种可能。

四、 电子仿真软件的电子教学中的利弊

电子仿真软件在高职电子教学中已得到广泛应用,给电子教学带来了极大的方便、直观。节约了大量的财力、物力、资源,也给学生学习电子带了生动直观的教学模式,是一种环保的电子教学手段,是值得大力推广的教学方式。但电子仿真软件的应用,让学生动手能力有一定的影响,特别是一些实际仪器、仪表的使用还是存在一定的差异,教师只要在利用电子仿真软件进行电子教学的同时,恰当地进行引导,既可以方便利用电子仿真软件进行直观电子教学,同时结合实际仪器仪表的操作规范,对电子教学是有很大益处的。

总之,电子仿真软件作为电子教学的辅助教学手段,不论是在电子理论教学,还是在电子实训教学中,都起到很重要的作用。因此,作为计算机技术广泛深入家庭的今天,电子仿真软件是电子教学不可缺少的教学模式。将为电子教学带来一场全新的革命。

参考文献:

[1]李东生,张勇.许四毛编著.protel 99se电路设计技术入门与应用[m].

电力电子器件论文范文第5篇

【关键词】模拟电子技术;
Proteus;

静态工作点;
交越失真

1、引言

模拟电子技术课程是电子、通信、电气相关专业的一门重要的专业基础课,该课程与实践结合紧密,是培养学生创新能力和实践创新教育的一门重要课程,在教学中,学生普遍反映模拟电子技术这门课程难度大,掌握困难,学习起来很吃力。究其原因有多方面的,其中一下几点尤为主要:第一,该课程涉及面广、概念多,模型多,内容杂、课程中无清晰的脉络主线,学生学习过程中很难从系统的思想把握每个单元知识;
第二,该课程理论与工程实践联系紧密,有很多工程近似计算和经验性内容,如二极管模型,理想模型、恒压降模型、折现模型,三极管小信号模型等,这些近似对与初学者来说很难把握在什么情况下使用何种模型,往往还容易用错模型;
第三,课程理论教学和实验教学学时少,如果学生的理论知识不够扎实,势必会影响到实验效果,实验做不好也会影响理论掌握;
第四,模拟电子技术研究的是具体分立原件,是集成电路的内部结构,理论复杂,现在教材内容删减多,很多问题没有交代清楚,内容衔接不连贯,仅仅拿来结论直接应用,学生难以融会贯通;
第五,模拟电子技术实验调试困难,针对学生人数多,指导老师很难照顾到每一个学生,实验多是非线性,前后级关联性强等特点,学生很难在短时间内掌握,从而使实验效果不理想。

2、Proteus相关设计实例

本文从EDA辅助教学出发,讨论如何利用EDA技术提高模拟电子技术课堂教学的效果。通过Proteus软件构建一些形象、直观的电子电路,演示仿真实例,“虚实”结合,让学生在有限的课堂教学时间内,对理论知识建立一个直观、初步的印象,看到有关知识点的仿真,这样能使得学生在很短的时间内掌握理论知识,同事激发他们的学习热情,实践动手能力等。

2.1射极跟随器的演示

三极管放大电路有三种基本组态方式,即共发射极、共集电极、共基极。这里以共集电极即射极跟随器为例,经过学习知道,射极跟随器的发射极输出电压与输入电压相位相同,电压大小基本等于输入电压,略小于输入电压。故而称为跟随器。在Proteus中建立输入文件,设计电路,选取器件,连接电路。运行仿真即可看到相应波形如图1。通过波形可以很直观的理解电压跟随器,激发学生探索建立共射极,和共基极的电路模型并进行仿真分析,从而更好的理解放大电路三种基本组态方式。

2.2运算放大器演示

集成运算放大器是模拟集成电路中应用极为广泛的一种器件,它不仅可以用于信号的运算、处理、变换、还可以用于开关电路中。运算放大器作为基本的电子器件,很容易用来设计各种应用电路。因此对运放的掌握尤为重要。这里以反向放大电路为例,建立仿真文件,观察输出波形如图2。通过输出波形可以很直观看出,经过运放LM324使输入波形反向得到放大,激发学生探索建立同向运算放大电路,积分、微分运算放大路电路模型并进行仿真分析,从而更好的各种类型的运放电路。